Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 19876, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963917

RESUMEN

The impact of bio-organic amendments on crop production is poorly understood in saline calcareous soils. The aim in the present study was to determine the effects of the application of organic manure along with lactic acid bacteria (LAB) on soil quality, and morpho-physio-biochemical responses, seed yield (SY) and essential oil yield (EOY) of fennel plants (Foeniculum vulgare Mill.) grown in saline calcareous soils. Eight treatments of farmyard manure (FM) or poultry manure (PM) individually or combined with Lactobacillus plantarum (Lp) and/or Lactococcus lactis (Ll) were applied to saline calcareous soil in two growing seasons. Either FM or PM combined with LAB had beneficial effects on lowering ECe, pH and bulk density and increasing total porosity, organic matter, and water and nutrient retention capacities in addition to total bacterial population in the soil. Growth, nutrient uptake, SY and EOY of plants were also enhanced when fennel seeds were inoculated with Lp and/or Ll and the soil was amended with any of the organic manures under unfavorable conditions. Compared to control (no bio-organic amendments), FM + Lp + Lt or PM + Lp + Lt treatment signficantlly (P ≤ 0.05) increased plant height by 86.2 or 65.0%, total chlorophyll by 73 or 50%, proline by 35 or 45%, glutathione by 100 or 138%, SY by 625 or 463% and EOY by 300 or 335%, respectively, in fennel plants. Co-application of the naturally occurring microorganisms (i.e., LAB) and organically-derived, nutrient-rich fertilizer (i.e., FM or PM) is recommended to improve yield of fennel plants in saline calcareous soils.


Asunto(s)
Foeniculum , Suelo , Animales , Suelo/química , Estiércol , Semillas , Aves de Corral
2.
Sci Rep ; 13(1): 13935, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626070

RESUMEN

The aromatic fennel plant (Foeniculum vulgare Miller) is cultivated worldwide due to its high nutritional and medicinal values. The aim of the current study was to determine the effect of the application of bio-organic fertilization (BOF), farmyard manure (FM) or poultry manure (PM), either individually or combined with Lactobacillus plantarum (LP) and/or Lactococcus lactis (LL) on the yield, chemical composition, and antioxidative and antimicrobial activities of fennel seed essential oil (FSEO). In general, PM + LP + LL and FM + LP + LL showed the best results compared to any of the applications of BOF. Among the seventeen identified FSEO components, trans-anethole (78.90 and 91.4%), fenchone (3.35 and 10.10%), limonene (2.94 and 8.62%), and estragole (0.50 and 4.29%) were highly abundant in PM + LP + LL and FM + LP + LL, respectively. In addition, PM + LP + LL and FM + LP + LL exhibited the lowest half-maximal inhibitory concentration (IC50) values of 8.11 and 9.01 µg mL-1, respectively, compared to L-ascorbic acid (IC50 = 35.90 µg mL-1). We also observed a significant (P > 0.05) difference in the free radical scavenging activity of FSEO in the triple treatments. The in vitro study using FSEO obtained from PM + LP + LL or FM + LP + LL showed the largest inhibition zones against all tested Gram positive and Gram negative bacterial strains as well as pathogenic fungi. This suggests that the triple application has suppressive effects against a wide range of foodborne bacterial and fungal pathogens. This study provides the first in-depth analysis of Egyptian fennel seeds processed utilizing BOF treatments, yielding high-quality FSEO that could be used in industrial applications.


Asunto(s)
Antiinfecciosos , Foeniculum , Lactobacillus plantarum , Lactococcus lactis , Aceites Volátiles , Antioxidantes/farmacología , Aceites Volátiles/farmacología , Fertilizantes , Estiércol , Semillas , Antiinfecciosos/farmacología
3.
Antioxidants (Basel) ; 11(8)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35892646

RESUMEN

Nanoparticles (NPs) exhibit distinct features compared to traditional physico-chemical synthesis and they have many applications in a wide range of fields of life sciences such as surface coating agents, catalysts, food packaging, corrosion protection, environmental remediation, electronics, biomedical and antimicrobial. Green-synthesized metal NPs, mainly from plant sources, have gained a lot of attention due to their intrinsic characteristics like eco-friendliness, rapidity and cost-effectiveness. In this study, zinc oxide (ZnO) NPs have been synthesized employing an aqueous leaf extract of Pelargonium odoratissimum (L.) as a reducing agent; subsequently, the biosynthesized ZnO NPs were characterized by ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDX), high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). Moreover, aqueous plant leaf extract was subjected to both qualitative and quantitative analysis. Antioxidant activity of ZnO NPs was assessed by DPPH assay, with varying concentrations of ZnO NPs, which revealed scavenging activity with IC50 = 28.11 µg mL-1. Furthermore, the anti-bacterial efficacy of the green synthesized ZnO NPs against four foodborne pathogenic bacterial strains was examined using the disk diffusion assay, and Staphylococcus aureus (ATCC 8095), Pseudomonas aeruginosa (ATCC10662) and Escherichia coli (ATCC 25922) were found to be the most sensitive against biosynthesized ZnO NPs, whereas the least sensitivity was shown by Bacillus cereus (ATCC 13753). The anti-inflammatory effect was also evaluated for both ZnO NPs and the aqueous leaf extract of P. odoratissimum through the human red blood cells (HRBC) membrane stabilization method (MSM) in vitro models which includes hypotonicity-induced hemolysis. A maximum membrane stabilization of ZnO NPs was found to be 95.6% at a dose of 1000 µg mL-1 compared with the standard indomethacin. The results demonstrated that leaf extract of P. odoratissimum is suitable for synthesizing ZnO NPs, with antioxidant, antibacterial as well as superior anti-inflammatory activity by improving the membrane stability of lysosome cells, which have physiological properties similar to erythrocyte membrane cells and have no hemolytic activity. Overall, this study provides biosynthesized ZnO NPs that can be used as a safe alternative to synthetic substances as well as a potential candidate for antioxidants, antibacterial and anti-inflammatory uses in the biomedical and pharmaceutical industries.

4.
Molecules ; 26(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34770907

RESUMEN

Rosa gallica var. aegyptiaca is a species of flowering plant belonging to the Rosaceae family that plays an important role as a therapeutic agent for the treatment of specific types of cancer, microbial infections, and diabetes mellitus. This work presents the first report on the evaluation of the antioxidant and antimicrobial potential along with the phytochemical analysis of Rosa gallica var. aegyptiaca leaves. Five leaf extracts of hexane, chloroform, methanol, hydromethanol 80%, and water were prepared. Assessment of antioxidant activity was carried out via DPPH radical scavenging assay. Antimicrobial activity against five foodborne pathogenic bacteria-including Listeria monocytogenes, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Salmonella enteritidis-and the fungus Candida albicans, was examined using the disc diffusion method. Total phenolic content and total flavonoid content were determined using the Folin-Ciocalteu reagent and aluminum chloride methods, respectively. Isolation, identification, and quantification of phenolic compounds were performed using HPLC-DAD analysis. Amongst the five leaf extracts that were investigated, hydromethanol 80% extract possessed the highest extraction yield, antioxidant activity, total phenolic content, and antimicrobial activity against all tested microbial strains. Moreover, this extract furnished six active phenolic compounds: gallic acid (1), (+) catechin (2), chlorogenic acid (3), (-) epicatechin (4), quercetin-3-O-α-d-(glucopyranoside) (5), and quercetin (6). This study provides an alternative utilization of R. gallica var. aegyptiaca leaves as a readily accessible source of natural antioxidants and antimicrobials in the food and pharmaceutical industries.


Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Hojas de la Planta/química , Rosa/química , Antiinfecciosos/análisis , Antiinfecciosos/química , Antioxidantes/análisis , Antioxidantes/química , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Fitoquímicos/análisis , Fitoquímicos/química , Extractos Vegetales/análisis , Extractos Vegetales/química
5.
Curr Pharm Biotechnol ; 20(3): 261-270, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30806309

RESUMEN

BACKGROUND: Drug combination is a new therapy to improve antibiotic deficiency treatment towards biofilm resistance. OBJECTIVE: This study was conducted to determine the potential effect of sodium oleate to inhibit established biofilms of two strains, methylotrophic bacteria Methylophilus quaylei in combination with ampicillin. Minimum inhibitory concentration (MIC) of ampicillin was determined and added in combination with sodium oleate and examined on planktonic and established biofilms of two strains M. quaylei were characterized by different properties of cell surface hydrophobicity. METHODS: The effect on biofilms was evaluated by the number of colony forming units (CFUs), crystal violet assay, light and scanning electron microscopy. RESULTS: The study demonstrates that sodium oleate has a promoting activity against planktonic growth of M. quaylei strains and has a slight inhibitory effect on biofilm. Addition of sodium oleate enhances the bactericidal effect of ampicillin against biofilm cells. Combination of ampicillin 0.1 mg/ml (MIC) and sodium oleate 0.03 mg/ml showed a remarkable destruction effect on established biofilms. DISCUSSION: Combination of ampicillin 0.1 mg/ml (MIC) and sodium oleate 0.03 mg/ml showed a remarkable destruction effect on established biofilms. Overall, results indicated that sodium oleate in combination with ampicillin enhances the inhibition of M. quaylei biofilms and this combination can be utilized for combating bacterial biofilm resistance. CONCLUSION: Overall, results indicated that sodium oleate in combination with ampicillin enhances the inhibition of M. quaylei biofilms and this combination can be utilized for combating bacterial biofilm resistance.


Asunto(s)
Ampicilina/administración & dosificación , Antibacterianos/administración & dosificación , Biopelículas/efectos de los fármacos , Methylophilus/efectos de los fármacos , Ácido Oléico/administración & dosificación , Sodio/administración & dosificación , Biopelículas/crecimiento & desarrollo , Sinergismo Farmacológico , Methylophilus/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana/métodos , Polipropilenos/química , Politetrafluoroetileno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...